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ABSTRACT
The objective of this study was to develop and test an EMG-based coactivation index and compare 
it to a coactivation index defined by a biologically assisted lumbar spine model to differentiate 
between tasks. The purpose was to provide a universal approach to assess coactivation of a multi-
muscle system when a computational model is not accessible. The EMG-based index developed 
utilised anthropometric-defined muscle characteristics driven by torso kinematics and EMG. 
Muscles were classified as agonists/antagonists based upon ‘simulated’ moments of the muscles 
relative to the total ‘simulated’ moment. Different tasks were used to test the range of the index 
including lifting, pushing and Valsalva. Results showed that the EMG-based index was comparable 
to the index defined by a biologically assisted model (r2  =  0.78). Overall, the EMG-based index 
provides a universal, usable method to assess the neuromuscular effort associated with coactivation 
for complex dynamic tasks when the benefit of a biomechanical model is not available.

Practitioner Summary: A universal coactivation index for the lumbar spine was developed to 
assess complex dynamic tasks. This method was validated relative to a model-based index for use 
when a high-end computational model is not available. Its simplicity allows for fewer inputs and 
usability for assessment of task ergonomics and rehabilitation.

1. Introduction

Complex, dynamic tasks ranging from manual materials 
handling to sedentary work to activities of daily living 
impose varying external moments that require internal 
moments to counterbalance the load. This involves the 
active coordination between systems of agonist and 
antagonist activity from the musculature surrounding the 
trunk. The coactivation between muscle systems serve to 
increase torso stiffness, stabilise the external load, and 
adjust to potential perturbations (Thelen, Schultz, and 
Ashton-Miller 1995). However, a higher neuromuscu-
lar effort may be endured due to high levels of coactiv-
ity. These efforts exist across all tasks; though when the 
amount of coactivation exceeds the typical amount nec-
essary to accomplish a task, a higher effort is endured by 
the neuromuscular system. For example, tasks requiring 
higher degrees of postural control from higher muscu-
lar activations to guard from pain (LBP patients) (Marras 
et al. 2004) or higher task frequency for inexperienced 
workers (Marras et al. 2006) would incur a higher neu-
romuscular effort. Given the complexity in assessing the 

neuromuscular effort of an exertion from a multi-muscle 
system, particularly in a complex dynamic environment, 
a coactivation index was needed to understand the effort 
from a systems perspective.

Surface electromyography (EMG) is typically used to 
measure muscle activity, which is then used to assess 
coactivity and the index (neuromuscular effort) associated 
with the coactivity. Current approaches in the literature 
are highly variable between one another and range from 
simplistic, a priori defined antagonist/agonist activations 
to advanced techniques which require the use of compu-
tational models to define muscle forces and moments (Le, 
Best et al. 2017). Given the variability between methods 
as well as the number of methods in existence, a stand-
ard, universally usable index for the comparison of tasks 
across studies is still lacking in the literature. The chal-
lenge of using a priori defined systems is the limited utility 
to a small number of predefined tasks involving either 
uniplanar dynamic or multiplanar isometric exertions. 
Changes in posture or location of the external load may 
require shifts in agonist or antagonist activity to accom-
modate the task (Lavender et al. 1992). Depending on the 
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components influence the force equation before devel-
oping a surrogate.

The objectives of this study were twofold: (1) reduce 
the components of the force equation to understand 
how it may affect the coactivation index and (2) develop 
an EMG-based coactivation index and compare it to the 
biomechanical model-dependent index developed from  
Le, Aurand et al (2017). This method would serve to assess 
coactivation for complex dynamic tasks in multiple-muscle 
system without a computationally intensive model. Its util-
ity resides in ergonomic task assessment as well as testing 
of rehabilitation effectiveness.

2. Coactivation index structure and component 
reduction

2.1. Biologically assisted model data extraction

The underlying logic of the coactivation index utilises the 
active force components from the 10 power-producing 
muscles of the trunk relative to their moment arms (ri) and 
the total active moment at L5/S1 (Equations (1)–(3)). These 
muscles include bilaterally the: latissimus dorsi, erector 
spinae, rectus abdominis, external obliques and internal 
obliques (represented as i = 1:10). Individual active mus-
cle force components were determined by a biologically 
assisted model as the product of the Gain Ratio (GR, N/
cm2 V), EMG activity (V), cross-sectional area (CSA, cm2), 
force–length (f[L], dimensionless) and force–velocity 
(f[V], dimensionless) modulation factors (Hwang et al. 
2016) (Equation (1)). The Gain Ratio (GR) is defined as the 
Gain (maximum muscle force per unit area) divided by 
the maximum voluntary contraction (MVC) and provides 
a method to modulate the force component without the 
need for measuring MVCs (Dufour, Marras, and Knapik 
2013). Maximum CSAs allowed for the estimate of the 
maximum force generation capabilities for each of the 
10 muscles. The force–length modulation factor (f([L])) 
accounts for changes in force production from changes 
in muscle length of the individual muscles relative to the 
normalised length of the muscle (Cadova, Vilimek, and 
Daniel 2014). The force–velocity factor (f([V])) modulates 
the force output based upon changes in muscle veloc-
ity during concentric and eccentric activity (Close 1964; 
Hill 1938). Collectively, these components represent the 
dynamic properties of the active force component of the 
musculature (Equation (1)).

Active moments were calculated as the cross-product 
of the L5/S1 moment arm (ri) and the active muscle force 
component (Fi) (Equation (2)). Summation of the active 
moments provided the total active moment (Mi) of the 
system (Equation (3)). The dot product of the individual 
muscle’s moment (mi) relative to the total active moment 
(Mi) normalised to the resultant total internal moment 

location of the external load and torso posture, the trunk 
musculature may change its individual moment contri-
butions. To account for those changes, a method by (Le, 
Aurand et al. 2017) utilised an extensively validated, bio-
logically assisted dynamic spine model to extract moment 
data based on the active force components. The moment 
data from each muscle were then classified as agonists 
and antagonists using a dot-product method (Andrews 
and Hay 1983) relative to the total internal moment. A 
similar technique was utilised by Song, Bok, and Chung 
(2004) to determine a coactivation index, but was limited 
to a priori definitions of antagonist activity and isomet-
ric testing. The novelty of the method from Le, Aurand  
et al (2017) is its ability to continuously classify antagonist 
and agonist activity from calculated moments and pro-
vide an understanding of neuromuscular effort of mul-
ti-planar, dynamic exertions/tasks. This effort was defined 
in the form of an index as the proportion of the overall 
system loading due to coactivity (synergistic activation of 
agonist and antagonist systems). This method is capable 
of differentiating levels of coactivation between various 
complex dynamic tasks involving lifting and pushing and 
showed that tasks requiring higher levels of postural con-
trol would result in a higher coactivation index (ie pushing 
with obstacles or precision placement during lowering). 
Although it provides a higher-resolution understanding 
of coactivity relative to a priori methods, it requires high-
end modelling efforts to calculate. To allow for ‘universal’ 
application, a method is sought to calculate a coactiva-
tion index comparable to the moment-based (operation-
ally defined as ‘standard’ in this manuscript) approach. 
Since the basis of the methodology relies on moments 
derived from the model, it was speculated that a surro-
gate approach may be developed for cases in which a 
model is not available.

Dynamic moment data are dependent on the deriva-
tion of the forces and the change in moment arms with 
respect to the vector lines of action. Force calculations 
necessitate modelling efforts to account for the effects 
of cross-sectional area (CSA), force–length and force–ve-
locity contributions to the muscle. Changes in the effec-
tive moment arms require an understanding of the lines 
of action and how they move relative to the geometry 
of the intervertebral bodies and dynamics of the torso. 
However, in the absence of a model, many of these fac-
tors may not be accessible which presents computational 
complexity in defining coactivation through the standard 
approach. Since the coactivation index is based upon a 
system of muscle forces acting relative to one another with 
dimensionless units, it was postulated that a surrogate 
approach with proportionate trends may be able to repli-
cate similar index magnitudes to the standard index. This 
requires the understanding of how each of the individual 
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results in a scalar projection (Proji) defining a muscle’s con-
tribution as either an agonist (Nm, positive) or antagonist 
(Nm, negative) (Equations (4)–(6)). The overall coactivation 
index was then defined as the product between the ratio 
(opposition) of the antagonist/agonist systems and the 
normalised magnitude of the contribution (Equation (7)). 
The maximum summation of agonist and antagonist sys-
tems for the normalised contribution from the entire data-
set collected (all subjects and trials). Overall, the idea is 
that the index would accommodate occupational-related 
activities with most indices occurring between 0 (lowest 
– no coactivation) and 1 (high coactivity). However, it is 
possible for the index to exceed 1 under extreme loading 
conditions. From the empirical data-set used in this study 
(further explained in Section 3), the maximum system acti-
vation (peak summation of agonist and antagonist activ-
ity) at L5/S1 was calculated as 545 Nm. Further details of 
the logic behind the equation can be found in Le, Aurand 
et al. (2017).

 

 

 

 

 

 

 

2.2. Component reduction

To achieve the first objective, each component of the active 
force equation (Equation (1)) was reduced stepwise one by 
one to understand how it affects the coactivation index 
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(Equation (7)) by comparing the results to the index from 
the full equation (standard index) using the coefficient of 
determination (r2). The reduced component and model-in-
dependent calculated force (Section 2.3) is operationally 
defined as a ‘simulated’ force (sForce) since the force value 
changes its magnitude and units after the CSA is extracted. 
The ‘simulated’ force units for the reduced equations of 
EMG*GR, EMG*GR*CSA and EMG*GR*CSA*F[L] are N/cm2, 
N and N, respectively. After each reduction in the force 
equation, the agonist and antagonist systems are then 
reassessed for the maximum system activation constant 
(max(agonist  +  antagonist)) used to normalise the con-
tribution (Equation (7)). This allows for the index magni-
tudes to be dimensionless and comparable to the standard 
index.

2.3. Model independent approach

The second objective was achieved by replacing the force 
component (Equation (1)) with a sForce component driven 
by normalised EMG (nEMG), anthropometric regression 
defined muscle lines of action, and scaled by normalised 
CSA (dimensionless). The purpose of this methodology 
was to provide a surrogate method to calculate a coacti-
vation index without accessibility to a biologically assisted 
model.

The nEMG approaches were independent of the model 
and required inputs of EMG and anthropometric-defined 
moment arms, CSAs and lines of action for each of the 10 
power-producing muscles of the trunk (Jorgensen, Marras, 
and Gupta 2003; Jorgensen et al. 2001; Marras et al. 2001). 
Torso kinematics were extracted from motion capture 
data represented in the form of quaternions to drive the 
dynamic lines of action. Each of the muscle lines of action 
were rotated using the quaternion rotation matrix (qTorsoi) 
through the rotation/translation of the insertion points 
(Equation (8)) relative to L5/S1 which was operationally 
defined as 0.1 m superior to the centroid of the motion 
capture-defined pelvis. Lines of action were converted 
into unit vectors (Equation (9)) with a magnitude defined 
by nEMG which was normalised by the peak of a series of 
reference exertions (maxEMGi) (Equation (10)). The nEMG 
was further scaled as the product with the normalisation of 
the CSAs (nCSA) relative to the muscle with the largest CSA 
in the system of muscles analysed, with output defined as 
sForce (Equation (11)). The sForce data were then used as 
inputs into Equations (2)–(7).
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a zero-phase moving average filter. Kinematic data were 
collected using the 24 infrared camera OptiTrack Flex 3 
motion capture system (NaturalPoint, Corvallis, OR, USA). 
Kinetic data were collected from a Bertec 4060A force plate 
(Bertec, Worthington, OH, USA).

3.5. Procedure

Subjects were briefed on the experiment and provided 
informed consent prior to participation. Afterwards, 
subject anthropometry was collected and surface EMG 
electrodes were placed bilaterally on the latissimus dorsi, 
erector spinae, rectus abdominis, external obliques and 
internal obliques (Mirka and Marras 1993). Reflective mark-
ers were placed on 41 landmarks on the body to collect 
kinematic data. Subjects were then asked to perform a 
series of calibration exertions using a 9.07 kg medicine ball 
for the purposes of EMG normalisation (Dufour, Marras, 
and Knapik 2013). These motions involved picking up the 
medicine ball (with handles) from approximately waist 
height to chest level near the body. While keeping the 
ball next to the chest, the subjects were instructed to do a 
side-to-side lateral bend, followed by sagittal flexion to the 
upright position. Once the subjects completed the calibra-
tion lifts, they were instructed on the tasks assigned and 
allowed to practice the tasks to reduce learning effects.

3.6. Data analysis

The independent variables were extracted (Table 1) at 
the peak coactivation index for each component reduc-
tion (model-dependent) and each model-independent 
approach for all combinations of tasks. The standard 
approach refers to the biomechanical model-dependent 
approach encapsulating all components of the force equa-
tion. Model-independent (nEMG) methods were normal-
ised relative to a series of multi-planar reference exertions 
using a 9.07 kg medicine ball and Valsalva manoeuvres. 
Peak EMG values of the reference exertions were extracted 
for each muscle for normalisation. After the calculation 
of the various indices, the peak of the nEMG-based index 
was compared relative to the peak of the standard index 
through the coefficient of determination (r2).

4. Results

The nEMG-based index had a comparable resolution to 
the standard index (Tables 1 and 2). These results describe 
the relative fit of the different reduced-component and 
nEMG approaches relative to the standard index. As 
expected, as components were reduced from the mod-
el-dependent approach, the r2 also declined. Out of the 
nEMG, model-independent approaches, the best ‘fit’ was 

 

 

3. Methods

3.1. Experimental approach

A study was conducted to test the reduced component 
and nEMG-based coactivation indices and compare them 
to the model-driven, standard coactivation index during 
complex dynamic tasks.

3.2. Subjects

Seventeen subjects (7 males and 10 females) were recruited 
for this study (age 26.7 ± 5.8 years, mass 73.6 ± 17.1 kg and 
height 172.4  ±  7.1  cm). All subjects reported no LBP in 
the past 6 months. Subjects provided informed consent 
prior to participating and the study was approved by the 
University Institutional Review Board.

3.3. Experimental design

Three different tasks were tested to assess the nEMG-
based coactivation indices relative to the standard indi-
ces. Tasks were grouped and counterbalanced as lifting/
lowering, pushing and Valsalva manoeuvres. Within the 
grouped tasks, a separate set of independent variables 
were tested, except for the Valsalva, which was executed 
while standing upright and repeated four times. Lifting/
lowering tasks involved different levels of handle height 
(chest and mid-thigh), asymmetry (clockwise (CW) 45, 
CW90 and sagittal-symmetric), weight (4.5 and 11.3 kg) 
and precision placement (constrained and none). Pushing 
tasks involved different combinations of speed (slow, pre-
ferred and fast), type of push (straight and turn), weight 
(54.4 and 145.2 kg) and precision placement (constrained 
and none). Further details of the experimental design and 
procedures can be found in Le et al. (2017).

3.4. Apparatus

Electromyographic (EMG) data were collected with a 
16-channel MA400-28 EMG system (Motion Lab Systems, 
Inc., Baton Rouge, LA, USA) and sampled at a rate of 
1000  Hz. Signals were high-pass filtered at 30  Hz, low-
pass filtered at 450 Hz, and notch filtered at 60 Hz as well 
as its aliases. Signals were rectified and smoothed using 
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and Marras 2012). Since the constants represented a high 
bound for occupational loading, they may be used as uni-
versal constants for normalisation outside of this study.

Overall, the nEMG-based index results were as expected 
in regards to previous studies and comparable to the 
standard index findings from Le, Aurand et al. (2017). The 
expected findings involved tasks requiring higher levels 
of control such as precision placement (Davis et al. 2002), 
asymmetric lifting (Marras et al. 2004), and pushing speed 
and level of control during pushing (Marras, Knapik, and 
Ferguson 2009). Since the focus of this paper is primarily 
on the comparisons between the model-independent 
method with the model-dependent method, further dis-
cussion of the statistically significant differences between 
conditions can be found in Le, Aurand et al. (2017). For 
the purposes of visualising the comparable magnitudes 
and trends, a sample of the index predictions of the nEMG 
approach versus the model approach between pushing 
tasks can be found in Figure 3. Although the findings were 
expected, the novelty of the approach resided in its ability 
to provide insight on the neuromuscular efforts for a vari-
ety of multi-planar dynamic exertions as a system, which 
had not been previously explored. The finding that the 
nEMG-based method gave similar results to the standard 
approach highlights the strength of this technique to 

found to be nEMG*nCSA3. Sample continuous plots com-
paring the different approaches (reduced component 
and nEMG) relative to the standard index can be found 
in Figure 1(a), (b) for lifting and pushing, respectively. The 
comparison between all the methods across the global 
tasks also showed that the nEMG*nCSA3 method provided 
the closest match independent of the model (Figure 2). 
To understand the limitations of coactivation predictions 
during complex dynamic tasks using the nEMG approach, 
Table 2 describes the comparability of the fits for lifting 
and pushing tasks. During lifting, comparability decreased 
with increasing asymmetry at chest height. During push-
ing, comparability increased with speed.

The maximum system coactivation (max(antago-
nist + agonist)) (Equation (7)) of the entire data-set was 
operationally defined as 545Nm for the standard and 0.2 m 
for the nEMG approach. The nEMG index coactivation 
system normalisation factor is 0.2 m because the muscle 
EMG data are dimensionless multiplied by their respec-
tive moment arms. In regards to the biologically assisted 
model, these constants were associated with high spinal 
loads of 7940 N of compression and 1310 N of A/P shear 
at L5/S1 which are beyond the NIOSH permissible limits 
of 6400 N for compression (Waters et al. 1993) and occa-
sional exposure limit of 1000 N for A/P shear (Gallagher 

Table 1. coefficients of determination (r2) of different reduced-component and nEmg coactivation methods relative to the standard 
index.

notes: Data presented as mean (± standard deviation).
*Denotes dependence on biologically assisted model. The sForce approach chosen for further analysis is represented by ‘x’. results presented as mean (± sD).

* * * x

F-L

CSA CSA

GR GR GR nCSA nCSA2 nCSA3 nCSA4

EMG EMG EMG nEMG nEMG nEMG nEMG nEMG
overall 0.970 0.954 0.826 0.612 0.630 0.745 0.780 0.780

(0.035) (0.089) (0.174) (0.251) (0.256) (0.213) (0.197) (0.203)
Lift/Lower 0.963 0.931 0.804 0.596 0.617 0.738 0.756 0.768

(0.043) (0.120) (0.201) (0.267) (0.273) (0.233) (0.223) (0.214)
Pushing 0.974 0.973 0.836 0.599 0.615 0.738 0.790 0.777

(0.024) (0.025) (0.143) (0.222) (0.228) (0.192) (0.168) (0.194)
Valsalva 0.996 0.995 0.960 0.935 0.934 0.909 0.944 0.944

(0.004) (0.007) (0.034) (0.105) (0.111) (0.099) (0.051) (0.056)

Table 2. coefficients of determination (r2) for the nEmg*ncsA3 coactivation method relative to the standard index.

notes: Weights and precision placement variables were pooled for the tasks. results presented as mean (± sD).

Lifting/Lowering (Asymmetry*Height) r2 Pushing (Speed*Type) r2

sagittal/chest 0.874 (0.150) slow/straight 0.700 (0.192)
cW45/chest 0.791 (0.183) Preferred/straight 0.743 (0.190)
cW90/chest 0.605 (0.279) Fast/straight 0.891 (0.103)
sagittal/mid-Thigh 0.742 (0.193) slow/Turn 0.738 (0.166)
cW45/mid-Thigh 0.745 (0.226) Preferred/Turn 0.803 (0.136)
cW90/mid-Thigh 0.782 (0.195) Fast/Turn 0.870 (0.091)
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achieved through two stages: (1) by stepwise reduc-
tion of the modulating components of the force equa-
tion (Equations (1) and (2)) developing a nEMG-based 
approach independent of the biologically assisted model 
and then comparing the continuous output to the stand-
ard index extracted from the model using the coefficient 
of determination (r2). In general, the nEMG approach cho-
sen can differentiate between complex dynamic tasks 
while exhibiting similar magnitudes and trends to the 
standard index. The advantages of having a model-inde-
pendent approach are to provide a method with reduced 
computational complexity and allow for ‘universal’ appli-
cation in the assessment of coactivity during complex 
dynamic tasks.

5.1. Component reduction (model dependent)

The reduction of components from the active force equa-
tion (Equation (1)) resulted in reduced comparability 
relative to the standard approach. Removal of the force–ve-
locity and force–length modulation factors resulted in 
small reductions to the coefficients of determination with 
lifting/lowering most affected. This was likely due to the 
range of motion required to move the weight at wider 
asymmetries or deeper torso flexion. Muscle lengths and 
velocities adapt to the complex postures to accomplish 
the task. These changes are highly interdependent with 
muscle activity due to their relation with the frequency 
of excitation of active muscle fibres (Bigland and Lippold 
1954). Therefore, force–length and force–velocity rela-
tionships are necessary to fine tune muscle force output 
through the understanding of length changes and muscle 
velocity during eccentric/concentric loading, respectively. 
When muscle CSA was also extracted from the force equa-
tion, a 17% decrease in overall comparability was seen rel-
ative to the standard index. CSA is a necessary component 
due to its relation to maximal force output (Gungor et al. 
2015; Maughan, Watson, and Weir 1983) which is typi-
cally described as the product of gain and CSA and occur 
between the physiological boundaries of 30 and 100 N/
cm2 (McGill and Norman 1987). The extraction of the gain 
ratio contribution reduced the comparability by another 
26%. The gain ratio is a factor in the equation represented 
as the gain divided by the MVC (Dufour, Marras, and Knapik 
2013). This empirically validated approach eliminated 
the need for the measurement of MVCs. Although there 
was a reduction in comparability, the index derived from 
the EMG*GR method was still capable of differentiating 
between complex dynamic tasks (Figure 2). Overall, the 
active force equation was found to be highly dependent 
on the gain ratio and CSA. An approach with a similar scal-
ing factor was needed to modulate muscle activity inde-
pendent of the biologically assisted model.

approximate a coactivation index for complex dynamic 
tasks without the benefit of a biomechanical joint model.

5. Discussion

The purpose of this study was to develop a nEMG-
based, model-independent coactivation index with the 
lowest number of components possible to differentiate 
between various complex dynamic tasks. The intent of 
this approach was to provide a meaningful and concise 
way to describe coactivation from a systems perspective 
(index) when a biomechanical model is not accessible 
across a variety of tasks within a range from 0 to 1 with 
extreme cases possibly exceeding 1. This objective was 

Figure 1. sample continuous data from (a) lifting/lowering at 90 
degrees of asymmetry with precision placement at mid-thigh 
height and (b) pushing at fast speed and heavy weight. note 
the peaks occurring (a) for lifting/lowering during precision 
placement and (b) when the momentum of the cart needed to be 
stopped at the end of the task.
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approach chosen can produce similar outcomes as the 
model-based EMG*GR*CSA approach (r = 0.88). The key 
to the nEMG method was its scaling by the CSA. As pre-
viously discussed, CSA is associated with force output. 
Hence, it was postulated that an understanding of trend 
of maximal force output relative to the CSA in the spinal 
muscles would assist in scaling the nEMG and may be 
determined as the product between gain and CSA. Since 
the latest version of the biologically driven model utilised 
a GR, it was not possible to empirically derive the maxi-
mum muscle forces for comparison because the equation 
encapsulated an optimised MVC. Therefore, data from a 
previous model incorporating MVCs were utilised to com-
pare max force relative to CSA (Le et al. 2012). Based upon 

5.2. EMG-based approach (model independent)

Using torso kinematics, normalised EMG (nEMG) and 
anthropometric-defined moment arms, CSAs and muscle 
lines of action, an nEMG-based coactivation index was 
developed. This approach allowed for the calculation of 
the coactivation index independent of the model. The 
muscle lines of action for the nEMG-driven approach were 
based upon a straight-line assumption driven by the kin-
ematics of the torso and the magnitude of the nEMG rela-
tive to its respective moment arm. The standard approach 
was model-dependent and utilised a muscle wrapping 
method, which allowed for a wider assessment of complex, 
asymmetric postures (Hwang et al. 2016). Considering 
the difference between methodologies, the nEMG-based 

Figure 2. mean comparisons between the different reduced component and nEmg indices. The solid black line represents the standard 
index and green dash-dotted line represents the model independent approach chosen. note the similar trends for lifting/lowering and 
pushing tasks for the nEmg*ncsA3 method compared to the standard index.

Figure 3. coactivation index calculation comparison between the nEmg*ncsA3 model-independent method (dotted line) and ‘standard’ 
model-dependent approach (solid line) for the pushing task interaction of speed and push type (mean ± sE). note the similarities in 
trends and magnitudes.
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to anthropometric differences, strength, and fear of fail-
ure during precision tasks. Despite these limitations, the 
nEMG-index was still sensitive to the conditions tested and 
supported by previous findings while being independent 
of the model.

6. Conclusions

This study has presented a method to assess coactivation 
of a multiple-muscle system for the assessment of com-
plex dynamic tasks independent of a biologically assisted 
model. The nEMG-based index developed provides an 
understanding of the neuromuscular effort of various tasks 
comparable to the index calculated from high-end model-
ling. The approach is based upon anthropometric, regres-
sion-defined moment arms and continuous classifications 
of antagonist/agonist activity. Experimental testing of the 
nEMG-based index was compared to a model-dependent 
standard index and demonstrated its effectiveness in dif-
ferentiating between tasks. Future studies would test the 
application of the nEMG-based methodology on other 
multiple-muscle systems such as the cervical spine and 
the upper and lower extremities.
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